Research on the Experimental System of Reinforcing the Base of Shallow Buried and Wet Collapsible Loess Tunnels

Author:

Li Zhiqiang1,Lv Shixin1,Zhao Jinpeng1,Liu Lulu123,Hu Kunkun1

Affiliation:

1. School of Civil Engineering, Weifang University, Weifang 261061, China

2. School of Highway, Chang’an University, Xi’an 710064, China

3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Due to the complexity of the surrounding rock structure and the geological environment of tunnel excavations, traditional analytical methods are insufficient in effectively dealing with the complex nonlinear deformation problems arising from tunnel excavation. In contrast, geomechanical model tests can comprehensively simulate the excavation construction process of tunnels and the mode and time effects of loads, providing a more realistic reflection of the complete process of engineering stress and deformation. Therefore, this study conducted a model test on reinforcing the loess tunnel base, building upon the first tunnel of the Lanqing Expressway located on the north bank of the Yellow River in Lanzhou City. The study utilized similarity theory to explore the theoretical design of the model and established a specialized model test platform to design the experiments with the goal of obtaining more scientific and effective experimental schemes to ensure the safety of soil reinforcement in tunnel bases during construction. This research will contribute to improving the safety, reliability, and economy of loess tunnel base reinforcement projects, and has a certain reference value for research in this field.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3