Long-Term Settlement Prediction of Ground Reinforcement Foundation Using a Deep Cement Mixing Method in Reclaimed Land

Author:

Lee HaksungORCID,Kim Seok-Jae,Kang Bang-Hun,Lee Kwang-SeungORCID

Abstract

The greenhouse foundation method requires a lower allowable bearing capacity compared to general buildings, but the high-spec and expensive prestressed high-strength concrete (PHC) pile reinforcement method is mainly applied. Therefore, the deep cement mixing (DCM) method, which is one of the ground reinforcement foundations that replaces the PHC piles and secures structural safety suitable for the greenhouse foundation, was considered. To verify the structural safety of the DCM method, a geotechnical survey and soil test were conducted, and a long-term settlement monitoring system was established. The specifications of the DCM foundation were designed to be 0.8 m in diameter, 3 m × 3 m in width and length, and 3 m in depth. Based on the settlement monitoring data, long-term settlement was predicted considering the greenhouse durability of 15 years. For long-term settlement prediction, the Log S–T, hyperbolic, Asaoka method, Schmertmann theory, and the finite element method (FEM) analysis were performed. In the case of the Log S–T, hyperbolic, and Asaoka method based on actual measurement data, the settlement amount was predicted to be 12.18~20.43 mm, and in the case of the Schmertmann empirical formula, it was predicted to be 19.66 m. The FEM analysis result was 8.89 mm. As the most conservative result, the DCM foundation method designed in this paper had an allowable bearing capacity of 310 kN/m2 and a long-term settlement of 20.43 mm. This is the result of satisfying both the allowable bearing capacity of 100 kN/m2 and the allowable settlement range of 25.4 mm as a foundation. Through this study, it was proven that long-term structural safety can be sufficiently secured when the DCM foundation is constructed on a soft ground through a design that considers the required service life and allowable bearing capacity of the structure. In addition, it was confirmed that the Hyperbolic, Asaoka, and FEM analysis method adopted in this paper can be applied to the long-term settlement behavior analysis of the DCM foundation method.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference45 articles.

1. Study on multi-purpose utilization and management of agricultural reclaimed land;Seo;Mag. Korean Soc. Agric. Eng.,2019

2. A Study on Prediction of Consolidation Settlement of Soft Soils;Park;Master’s Thesis,2009

3. Case Study of Stress Concentration Ratio of Composite Ground Improved by Deep Cement Mixing Method;Yoo;J. Korea Acad.-Ind. Coop. Soc.,2012

4. Foundation Methods for the Soft Ground Reinforcement of Lightweight Greenhouse on Reclaimed Land: A review

5. Basic Aspects of Deep Soil Mixing Technology Control

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3