Experimental Study on Mechanical Properties and Compressive Constitutive Model of Recycled Concrete under Sulfate Attack Considering the Effects of Multiple Factors

Author:

Gu Rui1,Wang Jian2ORCID,Li Benpeng3,Qi Di1,Gao Xiaohu4,Yang Zhiyong2

Affiliation:

1. Qilu Expressway Co., Ltd., Jinan 250100, China

2. School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China

3. Shandong Provincial Communications Planning and Design Institute Group Co., Ltd., Jinan 250101, China

4. Beijing Tsingda Green Technology Co., Ltd., Beijing 100084, China

Abstract

To investigate the mechanical properties and a compressive constitutive model of recycled concrete under sulfate attack considering the effects of multiple factors, two waste concrete strengths (i.e., C30 and C40), four replacement ratios of recycled coarse aggregates (i.e., 0, 30%, 50% and 100%), and two water–cement ratios (i.e., 0.50 and 0.60) were considered in this study, and a total of 32 recycled concrete specimens were designed and tested. The results indicated that the failure processes and patterns of recycled concrete were not significantly influenced by the replacement ratio of recycled coarse aggregates, the waste concrete strength, the water–cement ratio, or sulfate attack. The higher the replacement ratio of recycled coarse aggregates and the water–cement ratio and the lower the waste concrete strength, the more obvious the reduction in cubic compressive strength, with a maximum reduction of 38.48%. A prediction model for the cubic compressive strength of recycled concrete under sulfate attack was proposed. The higher the replacement ratio of recycled coarse aggregates and the water–cement ratio and the lower the waste concrete strength, the more significant the reduction in axial compressive strength, with a maximum reduction of 37.82%. A prediction model for the axial compressive strength of recycled concrete under sulfate attack was established. A compressive constitutive model of recycled concrete under sulfate attack considering the effects of the replacement ratio of recycled coarse aggregates, the waste concrete strength, and the water–cement ratio was established. The pore structure of recycled concrete was significantly destroyed by the expansion stress generated by Na2SO4 crystals: a large number of Na2SO4 crystals were attached to the surface of concrete matrix, and the concrete matrix became loose. The research results can provide a theoretical basis and data support for engineering applications of recycled concrete.

Funder

project of experimental and numerical research on the strength, mix proportions, and durability of recycled concrete

Qilu Expressway Co., Ltd. Technology R&D Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3