Influence of Nano-Silicon Dioxide in the Enhancement of Surface Structure of Public Filler and Properties of Recycled Mortar

Author:

Zhang Ming1,Cheng Chen1,Chiang Kingsley1,Wang Xinxin1,Zhu Yazhi2ORCID,Zhao Zengfeng2ORCID,Luo Hui3

Affiliation:

1. China State Construction Engineering (Hong Kong) Limited, Hong Kong 999077, China

2. Department of Structural Engineering, Tongji University, Shanghai 200092, China

3. School of Civil Engineering, Jiangsu Ocean University, Lianyungang 222005, China

Abstract

This paper proposes a method of enhancing public filler (PF) with nano-SiO2 (NS) to prepare modified recycled aggregate mortar (RAM). The improvement effect of NS solution at different concentrations and immersion times on the macroscopic physical properties of recycled public fine aggregates (PFA) was investigated. Moreover, the effect of NS on the basic physical properties and durability of recycled mortar (RM) and the reinforcement mechanism of NS on recycled mortar was analyzed through various techniques. Results indicated that the modification effect of NS could remove loose cement mortar from the surface of PFA. It reacted with calcium hydroxide and calcite to generate nano-particles that could fill pores in PFA. The water absorption rate of PFA decreased to 9.3% when immersed in 2% NS solution for 72 h. There was no significant improvement in the mechanical properties of RM when the solution concentration and immersion time were increased. However, the compressive strength of RM prepared by modifying PFA with 2% NS was increased by about 21.9%, and the capillary water absorption and electric flux were reduced by 56.3% and 15.1%, respectively. Micro-analysis results showed that the volcanic ash effect of NS enabled it to react with Ca(OH)2 adhered to the surface of PFA, generating C-S-H and improving the interfacial bonding of PFA. Moreover, NS adsorbed on the surface of PFA dispersed into the freshly mixed cement slurry, which further enhanced the internal structure of PFA.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3