Evolution of High Toughness Cementitious Composites Gas Permeability after Thermal-Mechanical Coupling Damage

Author:

Zeng Zhe1ORCID,Zhang Dengxiang12

Affiliation:

1. School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China

2. Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China

Abstract

High-toughness cementitious composite (HTCC) may be considered for use as a concrete lining material for underground lined rock caverns in compressed air energy storage (CAES) power stations. This experiment investigated the effect of coupled thermal-mechanical cycling on the changes in the gas permeability and pore structure of HTCC. According to the different operating conditions of CAES power stations, nine test conditions were selected with a compressive stress of 10 MPa and a temperature of 150 °C. The test results show that the HTCC have a peak tensile strain of up to 1.6% and an average crack width of 41~49 μm, providing good toughness and crack control. The permeabilities of HTCC were all significantly larger after loading by thermal-mechanical coupling cycles, but the change in permeability was more sensitive to compressive stresses. When the compressive stress is lower than 7.5 MPa and the temperature is lower than 100 °C, the permeability of HTCC can be maintained within 10−18 m2 orders of magnitude after the thermal-mechanical coupling cycle, which can satisfy the requirement of CAES impermeability performance. When the compressive stress reaches 10 MPa, the HTCC’s critical pore size increases, the pore size coarsens, and the permeability resistance deteriorates rapidly.

Funder

Natural Science Projects of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3