Experimental Study on the Coefficient of Earth Pressure at Rest for Sand

Author:

Li Libing1,Dai Zhiyu2,Liu Ruiming13,Jian Fuxian1

Affiliation:

1. Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210024, China

2. Institute of Engineering Mechanics, Yellow River Institute of Hydraulic Research, Zhengzhou 450001, China

3. College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China

Abstract

The coefficient of earth pressure at rest K0 is a state soil variable correlated with relative density Dr. As previously conducted K0 tests could not guarantee zero lateral deformation in the sand specimens, significant errors occurred in the test results. In this paper, a centrifugal model test method is used to study the K0 of sand with varying densities. The sand specimens with varying relative densities are prepared by sand pluviation, and a 50 g-ton centrifugal force is applied. Subsequently, the relationship of K0 and Dr with different densities is analyzed. The test results show that for the same type of sand, the value of K0 gradually increased with Dr. Based on the meso-evolution characteristics of sand particle recombination, various relationships between K0, the displacement deflection angle, and the friction offset angle between particles are analyzed. Furthermore, the relationship between particle volume fraction and K0 is derived, the assumption of increasing the coefficient K0 with the increase in Dr is verified, and the effect of Dr of sand on the force transfer behavior of the internal particle fabric is briefly discussed. The research results could significantly improve the current earth pressure theories.

Funder

Science and Technology Development Fund of Yellow River Institute of Hydraulic Research

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3