Study on Mechanical Properties of Sandy Soil Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP)

Author:

Yuan Lujing1,Li Gang1,Liu Jia1ORCID,Wang Pengzhou2,Liu Cong1,Zhang Jinli3ORCID

Affiliation:

1. Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China

2. China Construction Fourth Engineering Division Corp., Ltd., Guangzhou 511400, China

3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Earth–rock dams are widely distributed in China and play an important role in flood control, water storage, water-level regulation, and water quality improvement. As an emerging seepage control and reinforcement technology in the past few years, enzyme (urease)-induced calcium carbonate precipitation (EICP) has the qualities of durability, environmental friendliness, and great economic efficiency. For EICP-solidified standard sand, this study analyzes the effect of dry density, amount of cementation, standing time, perfusion method, and other factors on the permeability and strength characteristics of solidified sandy soil by conducting a permeability test and an unconfined compression test and then working out the optimal solidification conditions of EICP. Furthermore, a quantitative relationship is established between the permeability coefficient (PC), unconfined compressive strength (UCS), and CaCO3 generation (CG). The test findings indicate that the PC of the solidified sandy soil decreases and the UCS rises as the starting dry density, amount of cementation, and standing time rise. With the increase of CG, the PC of the solidified sandy soil decreases while the UCS increases, indicating a good correlation among PC, UCS, and CG. The optimal condition of solidification by EICP is achieved by the two-stage grouting method with an initial dry density of 1.65 g/cm3, cementation time of 6 d, and standing time of 5 d. Under such conditions, the permeability of the solidified sandy soil is 6.25 × 10−4 cm/s, and the UCS is 1646.94 kPa. The findings of this study are of great theoretical value and scientific significance for guiding the reinforcement of earth–rock dams.

Funder

Natural Science Basic Research Program of Shaanxi Province

Scientific Research Program Funded by the Education Department of Shaanxi Provincial Government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3