A Web3D Rendering Optimization Algorithm for Pipeline BIM Models

Author:

Wang Xiaoyu1,Huo Liang1,Shen Tao1,Yang Xincheng1,Bai Haoyuan1

Affiliation:

1. School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

BIM (building information modeling) plays a pivotal role in the construction industry. BIM technology tailored for pipelines offers in-depth semantic information and spatial data, bolstering the utility and implementation of digital twin-associated technologies in both architecture and urban planning. This paper introduces a rendering optimization algorithm rooted in the BSP Tree (Binary Space Partitioning Tree). The algorithm is used to address the challenges of slow loading and poor rendering quality of pipeline BIM models when displayed on the web, which stem from large amounts of model data and complex geometric configurations. Initially, the algorithm delves into the geometric distribution traits of the pipeline BIM model from multiple perspectives, pinpointing the spatial division dimension. Subsequently, it employs an adaptive step size technique for spatial segmentation, harmonizing it with real-world application contexts. Concurrently, any superfluous data that emerge are refined to uphold the structural wholeness of the BIM model. This algorithm is adept at systematically arranging and overseeing the BIM model data. Trial outcomes reveal that the AKDT (Adaptive K-Dimensional Tree) algorithm significantly trims the browser’s initial rendering duration while maintaining the model’s accuracy and semantic uniformity. Moreover, it excels in areas such as rendering frame rate, user interaction responsiveness, and data transmission duration. In essence, the algorithm stands out for its efficiency and precision in rendering pipeline BIM models on web platforms, achieving the desired optimization results.

Funder

CHINA ACADEMY OF RAILWAY SCIENCES CORPORATION LIMITED

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3