Prediction of Ultra-High-Performance Concrete (UHPC) Properties Using Gene Expression Programming (GEP)

Author:

Qian Yunfeng1,Yang Jianyu1,Yang Weijun1,Alateah Ali H.2ORCID,Alsubeai Ali3,Alfares Abdulgafor M.4ORCID,Sufian Muhammad5ORCID

Affiliation:

1. School of Civil Engineering, Changsha University of Science & Technology, Changsha 410000, Hunan, China

2. Department of Civil Engineering, College of Engineering, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia

3. Department of Civil Engineering, Jubail Industrial College, Royal Commission of Jubail, Jubail Industrial City 31961, Saudi Arabia

4. Department of Electrical Engineering, College of Engineering, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia

5. School of Civil Engineering, Southeast University, Nanjing 210096, China

Abstract

In today’s digital age, innovative artificial intelligence (AI) methodologies, notably machine learning (ML) approaches, are increasingly favored for their superior accuracy in anticipating the characteristics of cementitious composites compared to typical regression models. The main focus of current research work is to improve knowledge regarding application of one of the new ML techniques, i.e., gene expression programming (GEP), to anticipate the ultra-high-performance concrete (UHPC) properties, such as flowability, flexural strength (FS), compressive strength (CS), and porosity. In addition, the process of training a model that predicts the intended outcome values when the associated inputs are provided generates the graphical user interface (GUI). Moreover, the reported ML models that have been created for the aforementioned UHPC characteristics are simple and have limited input parameters. Therefore, the purpose of this study is to predict the UHPC characteristics while taking into account a wide range of input factors (i.e., 21) and use a GUI to assess how these parameters affect the UHPC properties. This input parameters includes the diameter of steel and polystyrene fibers (µm and mm), the length of the fibers (mm), the maximum size of the aggregate particles (mm), the type of cement, its strength class, and its compressive strength (MPa) type, the contents of steel and polystyrene fibers (%), and the amount of water (kg/m3). In addition, it includes fly ash, silica fume, slag, nano-silica, quartz powder, limestone powder, sand, coarse aggregates, and super-plasticizers, with all measurements in kg/m3. The outcomes of the current research reveal that the GEP technique is successful in accurately predicting UHPC characteristics. The obtained R2, i.e., determination coefficients, from the GEP model are 0.94, 0.95, 0.93, and 0.94 for UHPC flowability, CS, FS, and porosity, respectively. Thus, this research utilizes GEP and GUI to accurately forecast the characteristics of UHPC and to comprehend the influence of its input factors, simplifying the procedure and offering valuable instruments for the practical application of the model’s capabilities within the domain of civil engineering.

Funder

National Natural Science Foundation of China

Hunan Natural Science Foundation

Hunan Provincial Department of Water Resources Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3