Bibliometric Analysis and Review of Deep Learning-Based Crack Detection Literature Published between 2010 and 2022

Author:

Ali LuqmanORCID,Alnajjar FadyORCID,Khan WasifORCID,Serhani Mohamed AdelORCID,Al Jassmi HamadORCID

Abstract

The use of deep learning (DL) in civil inspection, especially in crack detection, has increased over the past years to ensure long-term structural safety and integrity. To achieve a better understanding of the research work on crack detection using DL approaches, this paper aims to provide a bibliometric analysis and review of the current literature on DL-based crack detection published between 2010 and 2022. The search from Web of Science (WoS) and Scopus, two widely accepted bibliographic databases, resulted in 165 articles published in top journals and conferences, showing the rapid increase in publications in this area since 2018. The evolution and state-of-the-art approaches to crack detection using deep learning are reviewed and analyzed based on datasets, network architecture, domain, and performance of each study. Overall, this review article stands as a reference for researchers working in the field of crack detection using deep learning techniques to achieve optimal precision and computational efficiency performance in light of electing the most effective combination of dataset characteristics and network architecture for each domain. Finally, the challenges, gaps, and future directions are provided to researchers to explore various solutions pertaining to (a) automatic recognition of crack type and severity, (b) dataset availability and suitability, (c) efficient data preprocessing techniques, (d) automatic labeling approaches for crack detection, (e) parameter tuning and optimization, (f) using 3D images and data fusion, (g) real-time crack detection, and (h) increasing segmentation accuracy at the pixel level.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3