Early-Stage Temperature Gradients in Glazed Spandrels Due to Aesthetical Features to Support Design for Thermal Shock

Author:

Montali JacopoORCID,Laffranchini Luciano,Micono Carlo

Abstract

Investigating thermal breakage of glass panes requires careful analysis of the environmental boundary conditions to determine the expected thermal gradient between the sunlit and shaded parts of the glass. This is particularly critical for glazed spandrels, where an opaque posterior insulation layer normally increases the system’s temperatures. The choice of the spandrel system should also be evaluated against the aesthetical impression that it conveys. The aim of this study is to understand how early design factors, such as aesthetical features like color, are driving temperature gradients in the glazed pane to design for thermal shock. Multiple finite-differences analyses in a quasi-static regime for non-ventilated, single glazed spandrels were conducted in three locations (London, New York and Mumbai). Results were then analyzed via a general linear model in SAS 9.4 and Tuckey post hoc analysis. It was shown that a low absorptance of the back insulation (e.g., light color) can lead to a wide range of possible temperature gradients depending on the glass transparency, with higher values of the thermally induced temperature gradients for more opaque glasses. Conversely, a high absorptance of the insulation layer leads to moderate values of glass temperature gradients, which are not substantially sensitive to the effect of the glass transparency.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3