Optimization of the Seismic Performance of a Steel-Concrete Wind Turbine Tower with the Tuned Mass Damper

Author:

Yue YanchaoORCID,Li ChangxinORCID,Jia Kai,Zhang Yuhang,Tian Jingjing

Abstract

To optimize the seismic performance of a new type of steel-concrete tower, a 120 m steel-concrete composite tower model with a tuned mass damper (TMD) was constructed in ABAQUS for simulation analysis. Firstly, a time history analysis was conducted to study the towers with and without a TMD to determine the difference in their accelerations, velocities, and displacements. Then, a frequency spectrum analysis was performed to determine the tower vibration reduction effect of TMDs with different mass ratios. Five different cases were considered to explore the impact of different layouts on the dynamic performance of the tower. The results showed that the TMD had a significant vibration reduction effect on the tower accelerations, velocities, and displacements. The acceleration was reduced the most, while the vibration reduction effect in the middle of the tower was more significant than that at the top of the tower. For the steel-concrete tower studied in this paper, the optimal mass ratio of TMD was found to be 0.01. Placing one TMD at the top and another in the middle of the tower was found to be the optimal TMD arrangement for tower vibration reduction.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference44 articles.

1. A review of wind energy technologies

2. The status and development of materials of large-scale wind turbine tower;Yan;Wind Energy,2013

3. The rapid evolution of wind turbine tower structural systems: A historical and technical overview;Agbayani;Proceedings of the Structures Congress,2012

4. Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results

5. Status of corrosion and protection for offshore wind towers;Sin;Corros. Prot.,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3