Mechanical Characteristics of Cracked Lining Reinforced with Steel Plate–UHPC Subjected to Vertical Load

Author:

Wei Ju1ORCID,Ding Zude1,Shen Wanhu2,Li Xiaoqin1

Affiliation:

1. Faculty of Architecture and Engineering, Kunming University of Science and Technology, Kunming 650500, China

2. Shandong Hi-Speed Engineering Construction Group Co., Ltd., Jinan 250014, China

Abstract

The steel plate reinforcement method is widely used for strengthening damaged linings. Nevertheless, low durability is one of the disadvantages of the steel plate reinforcement method, which uses epoxy resin as the interface binder. To enhance the load-bearing performance and strengthening effect of steel-plate-reinforced structures, this study introduced ultra-high performance concrete (UHPC) as the reinforcing bonding layer and proposed a novel method for steel plate–UHPC reinforcement of cracked linings. A mechanical performance model test was conducted on a 1/5 scale lining model using a loading test device to evaluate the load-bearing performance and stress deformation of both conventional steel plate and steel plate–UHPC reinforced cracked linings. The characteristics, mechanisms of failure, and impacts of strengthening of the steel plate reinforcement method and steel plate–UHPC reinforcement method for cracked linings were compared. A numerical simulation model was developed to investigate the reinforcement effect of cracked linings using steel plate–UHPC reinforcement. The analysis included examining the influence of steel plate thickness, UHPC bonding layer thickness, and reinforcement timing. Model test results show that the overall damage mode of the steel plate–UHPC-reinforced structure had good elastic–plastic behaviour, and the deformation and damage process under the vertical concentrated load can be divided into four typical phases. Compared with the traditional steel plate reinforcement, the ultimate load-carrying capacity and ductility of the steel plate–UHPC-reinforced structure were increased by 53% and 366%, respectively, showing significantly better load-carrying capacity and deformation performance. Numerical simulation results show that the reinforced structure’s load-carrying capacity and stiffness enhancement rate increased non-linearly with the increase in UHPC layer thickness and steel plate thickness. However, reasonable reinforcement timing exists for steel plate-UHPC reinforcement, and too late reinforcement timing leads to a decrease in structural load-carrying capacity and stiffness enhancement rate.

Funder

Transportation Science and Technology Project of Yunnan province, China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3