Energy Efficiency in Dome Structures: An Examination of Thermal Performance in Iranian Architecture

Author:

Heidari Ali1ORCID,Olivieri Francesca1

Affiliation:

1. Departamento de Construcción y Tecnología Arquitectónicas, Escuela Tecnica Superior de Arquitectura, Universidad Politécnica de Madrid, Av. Juan de Herrera 4, 28040 Madrid, Spain

Abstract

This study investigates the energy efficiency of dome-shaped structures in traditional Iranian architecture in regions with cold winters and hot summers against the backdrop of rising energy consumption and environmental concerns. The present study employed Design Builder software to simulate three discrete models of Nowzari Caravanserai, featuring dome, flat, and sloping roofs. It was compared to the original model’s dome-shaped roof in terms of energy consumption and internal temperature. The objective was to investigate the potential differences in thermal energy consumption across these distinct roof designs in all months of the year. The results indicate that the dome-shaped structures exhibit better efficacy in controlling indoor temperatures, as demonstrated by a marked increase in indoor temperatures during colder months and a decrease in indoor temperatures during hotter months, relative to alternative structures. Moreover, the results of the simulation of two domed-roof models with ventilation and without ventilation showed that in this climate zone, the ventilation holes built into the roof have a unique efficiency in adjusting the internal temperature. The implications of this research include that traditional architectural features such as domed structures can be incorporated into contemporary construction practices to foster energy-efficient buildings and sustainable urbanization. This holds true not only for hot and desert climate regions but also for areas characterized by both hot summers and cold winters. The integration of traditional expertise and modern technology can help create buildings that balance aesthetics and sustainability, creating a cleaner, more sustainable built environment.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3