Real Time Building Evacuation Modeling with an Improved Cellular Automata Method and Corresponding IoT System Implementation

Author:

Ji YanpingORCID,Wang Wensi,Zheng Mengyi,Chen ShuoORCID

Abstract

Facility emergence evacuation is often a complicated process under extreme conditions. Most of the buildings today use pre-installed signages to guide the emergence evacuation. However, these guidances are sometimes insufficient or misleading, particularly for evacuating from high-rise buildings or complex buildings, such as schools, hospitals, and stadiums. Following a planned route may lead the crowd to move towards dangers, such as smoke and fire. The future emergency guidance system should be more intelligent and be able to guide people to evacuate with a higher survival possibility. This study proposes a real-time building evacuation model with an improved cellular automata (CA) method. This algorithm combines cellular automata with the potential energy field (PEF) model in fluid dynamic theory (FDT) to choose safe paths for the crowd and reduce the possibility of stampedes. Custom-designed wireless sensors, artificial intelligence (A.I.) enhanced surveillance cameras, intelligent emergency signage systems, and edge computing servers are used to sample fire and crowd data, operate the intelligent evacuation algorithm, and guide the crowd with the signage system in real-time conditions. In addition, we performed the algorithm simulation on a two-dimensional plane generated based on the building structure of the Beijing Capital Airport Hospital. The evacuation drill simulations show that the average escape time is significantly shortened with optimal real-time guidance. In one case, a 72% reduction in evacuation time is achieved compared with evacuation using pre-installed signages. The results also demonstrated that the proposed model and system’s evacuation time reduction performance is particularly good in crowded buildings, such as schools or stadiums.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3