Multi-Zone Energy Performance Assessment of Algerian Social Housing Using a Parametric Approach

Author:

Hadji Ikram1ORCID,Mazouz Said1,Mokhtari Abderrahmane Mejedoub2,Benzaama Mohammed-Hichem3,El Mendili Yassine3ORCID

Affiliation:

1. Laboratory of Quality Assessment in Architecture and the Built Environment (LEQUAREB), University Larbi Ben M’hidi of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria

2. Laboratory Materials, Soil and Thermal (LMST), Faculty of Architecture and Civil Engineering, University of Science and Technology, Mohamed Boudiaf, Oran 31000, Algeria

3. Institut de Recherche, ESTP, Ecole Spéciale des Travaux Publics, 28 Avenue du Président Wilson, F-94234 Cachan, France

Abstract

In the early stages of building design, decisions are made about the building’s form and envelope, but designers rarely base their decisions on sophisticated energy simulations, even though these features are critical to a building’s energy performance. This paper employs three methods—empirical, parametric, and uncertainty—to assess the interconnectedness of building form, envelope, orientation, and occupancy regarding thermal comfort and energy consumption for heating and cooling a residential building across three regions: Gdyel (mediterranean climate), Oum El Bouaghi, and Constantine (semi-arid climate). The study variables include indoor air temperature, relative humidity, and energy consumption. The initial findings stem from an experiment conducted in an apartment on the top floor of a building in Gdyel, which allowed us to record the evolution of the variables mentioned throughout the year and validate the parametric results of the multi-zone model created in TRNSYS16 software. This study showed that for the considered climates, a compact form is more suitable; it was found that the top floor with SF = 0.57 needs about 30% to 54% more energy than the inter-floor with SF = 0.21. In addition, the heating and cooling methods and habits adopted by Algerian households are responsible for 18% to 35% on the top floor and the inter-floor, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3