Seismic Performance of Cross-Shaped Partially Encased Steel–Concrete Composite Columns: Experimental and Numerical Investigations

Author:

Xu Qiuyu123,Liu Yong123,Wang Jingfeng3

Affiliation:

1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150076, China

2. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150076, China

3. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

Special-shaped partially encased steel–concrete composite (PEC) columns could not only improve the aesthetic effect and room space use efficiency, but also exhibit good mechanical performance under static load when used in multi-story residential and office buildings. However, research on the seismic performance of special-shaped PEC columns is insufficient and urgently needed. To investigate the seismic performance of cross-shaped partially encased steel–concrete composite (CPEC) columns, three CPEC columns were designed and tested under combined constant axial load and lateral cyclic load. The test results show that the CPEC columns had good load capacity and ductility, and that the columns failed because of concrete crushing and steel flange buckling after the yielding of the steel flange. The plump hysteresis loops indicated that the CPEC column also had good energy dissipation capacity. Due to the constraint of hydraulic jacks, increasing the load ratio would decrease the effective length, thereby increasing the load capacity of the CPEC column and decreasing the ductility. A finite element model was also established to simulate the response of the CPEC columns, and the simulated results agree well with the experimental results. Thereafter, an extensive parametric analysis was performed to study the influences of different parameters on the seismic performance of CPEC columns. For the CPEC column with an ideal hinged boundary condition at the top, its lateral load capacity gradually decreases with the growth of the load ratio and link spacing and increases with the rise of the steel yield strength, concrete compressive strength, flange and web thickness, and sectional aspect ratio. This research could provide a basis for future theoretical analyses and engineering application.

Funder

Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3