Integrated Schematic Design Method for Shear Wall Structures: A Practical Application of Generative Adversarial Networks

Author:

Fei YifanORCID,Liao WenjieORCID,Zhang Shen,Yin Pengfei,Han Bo,Zhao PengjuORCID,Chen Xingyu,Lu XinzhengORCID

Abstract

The intelligent design method based on generative adversarial networks (GANs) represents an emerging structural design paradigm where design rules are not artificially defined but are directly learned from existing design data. GAN-based methods have exhibited promising potential compared to conventional methods in the schematic design phase of reinforced concrete (RC) shear wall structures. However, for the following reasons, it is challenging to apply GAN-based approaches in the industry and to integrate them into the structural design process. (1) The data form of GAN-based methods is heterogeneous from that of the widely used computer-aided design (CAD) methods, and (2) GAN-based methods have high requirements on the hardware and software environment of the user’s computer. As a result, this study proposes an integrated schematic design method for RC shear wall structures, providing a workable GAN application strategy. Specifically, (1) a preprocessing method of architectural CAD drawings is proposed to connect the GAN with the upstream architectural design; (2) a user-friendly cloud design platform is built to reduce the requirements of the user’s local computer environment; and (3) a heterogeneous data transformation method and a parametric modeling procedure are proposed to automatically establish a structural analysis model based on GAN’s design, facilitating downstream detailed design tasks. The proposed method makes it possible for the entire schematic design phase of RC shear wall structures to be intelligent and automated. A case study reveals that the proposed method has a heterogeneous data transformation accuracy of 97.3% and is capable of generating shear wall layout designs similar to the designs of a competent engineer, with 225 times higher efficiency.

Funder

National Natural Science Foundation of China

National Key R&D Program

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3