Crack Detection of Curved Surface Structure Based on Multi-Image Stitching Method

Author:

Cui Dashun1,Zhang Chunwei1ORCID

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China

Abstract

The crack detection method based on image processing has been a new achievement in the field of civil engineering inspection in recent years. Column piers are generally used in bridge structures. When a digital camera collects cracks on the pier surface, the loss of crack dimension information leads to errors in crack detection results. In this paper, an image stitching method based on Speed-Up Robust Features (SURFs) is adopted to stitch the surface crack images captured from different angles into a complete crack image to improve the accuracy of the crack detection method based on image processing in curved structures. Based on the proposed method, simulated crack tests of vertical, inclined, and transverse cracks on five different structural surfaces were conducted. The results showed that the influence of structural curvature on the measurement results of vertical cracks is very small and can be ignored. Nevertheless, the loss of depth information at both ends of curved cracks will lead to errors in crack measurement outcomes, and the factors that affect the precision of crack detection include the curvature of the surface and the length of the crack. Compared with inclined cracks, the structural curvature significantly influences the measurement results of transverse cracks, especially the length measurement results of transverse cracks. The image stitching method can effectively reduce the errors caused by the structural curved surface, and the stitching effect of three images is better than that of two images.

Funder

National Key Research and Development Program

Key Research and Development Program of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3