Effects of Wetting–Drying Cycles on the Macro and Micro Properties of the Cement-Stabilized Soil with Curing Agent

Author:

Hu Wenjun12,Li Kun12,Yin Wenhao12,Zhang Han12,Xue Yi12,Han Yutong12,Liu Pingyun2

Affiliation:

1. Key Laboratory of Building Structural Retrofitting and Underground Space Engineering (Shandong Jianzhu University), Ministry of Education, Jinan 250101, China

2. School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China

Abstract

Cement-stabilized soil is a commonly used pavement base/bottom base material. Adding a suitable curing agent to cement-stabilized soil can effectively reduce the dosage of cement, meet the strength requirements, and also greatly improve its water stability. In this paper, three kinds of cement dosage (6%, 8%, and 10%) of cement-stabilized soil were selected to add a 0.04% organic liquid curing agent, and then compared with high-dose cement (10% and 12%)-stabilized soil. The influence of wetting–drying cycles on the mechanical properties of the five stabilized soils was discussed. The mineral composition of cement-stabilized soils before and after the addition of a curing agent was analyzed by X-ray diffraction (XRD), and the microscopic morphology of 10% cement-stabilized soils with a curing agent was studied by scanning electron microscopy (SEM). The macroscopic test shows that the unconfined compressive strength of solidified cement-stabilized soil can be divided into three stages with the increase in the times of the wetting–drying cycles, which are the rapid decay stage, stable enhancement stage, and stable decay stage. The wetting–drying stability coefficient first increases, and then decreases with the increase in the times of the wetting–drying cycles. The microscopic test shows that the addition of a curing agent can enhance the content of hydration products in the cement-stabilized soil specimen; at the curing age of 28 d, with the increase in the times of the wet–dry cycles, the structure of the solidified cement-stabilized soil gradually broke down. The surface porosity P and pore diameter d showed an overall upward trend but decreased at the fifth wetting–drying cycle. The pore orientation weakened. The results show that the resistance of cement-stabilized soil with a curing agent is obviously better than that of cement-stabilized soil under wet–dry conditions.

Funder

Natural Science Foundation of Shandong Province

Shandong Province Higher Educational Science and Technology Program

Publisher

MDPI AG

Reference27 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3