Chemical and Creep Models Applied to Concrete Damaged by Alkali–Silica Reactions

Author:

Roma Rodrigo F.1ORCID,Silva Fernando A. N.1ORCID,Bourbatache Mohamed K.2ORCID,Tahlaiti Mahfoud3ORCID,Delgado João M. P. Q.4ORCID,Azevedo António C.5ORCID

Affiliation:

1. Civil Engineering Department, Pernambuco Catholic University, Recife 50050-900, Brazil

2. Institut National des Sciences Appliquées de Rennes, 35700 Rennes, France

3. Research Institute in Civil Engineering and Mechanics, Centrale Nantes, 44321 Nantes, France

4. CONSTRUCT-LFC, Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

5. Instituto Federal de Ciências de Educação e Tecnologia de Pernambuco (IFPE), Recife 50670-430, Brazil

Abstract

Concrete structures that experience internal swelling reactions are often affected by other deleterious mechanisms, such as creep and shrinkage. In Brazil and many other countries around the world, numerous cases of building foundations and concrete dams were investigated due to the damage associated with internal expansions. Macroscopic models for the numerical representation of these expansions must take into account the influence of key environmental parameters such as temperature, degree of saturation, and the rate of development of the chemical reaction. To be relevant in structural applications, concrete creep models must consider several important phenomena, such as non-linearity, multi-axiality, and thermal and drying effects. In order to prevent these pathologies, to plan rehabilitation work, and to develop new design procedures, numerical simulation using the finite element method (FEM) is a very useful tool. This work aimed to implement a chemical model to simulate the advancement of the internal expansion reactions and a mechanical model to simulate creep and shrinkage phenomena in COMSOL Multiphysics® to reassess concrete structures suffering from these mechanisms. Both models were implemented separately to evaluate their responses and compare them with the theoretical results and experimental benchmarks proposed by the developers of these models. The numerical results obtained presented an excellent agreement with the experimental results, with a deviation of less than 10%, which showed that the implementation of the developed numerical models was very efficient. Moreover, this research holds significant importance as the mathematical models used to simulate internal expansions in concrete are currently only available in limited-use FEM software’s. Therefore, demonstrating the successful implementation of these models in widely used finite element programs and their ability to produce reliable results would be a valuable contribution.

Funder

PIDDAC

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3