Research on the Modulus Decay Model under a Three-Dimensional Stress State of Asphalt Mixture during Fatigue Damage

Author:

He Yonghai1,Lv Songtao234ORCID,Wang Ziyang25,Ma Huabao1,Lei Wei1,Pu Changyu1,Meng Huilin1,Xie Nasi2,Peng Xinghai2

Affiliation:

1. Hebei Provincial Communications Planning, Design and Research Institute Co., Ltd., Shijiazhuang 050090, China

2. School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China

3. National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China

4. National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Changsha) Changsha University of Science & Technology, Changsha 410114, China

5. School of Transportation, Southeast University, Nanjing 211189, China

Abstract

Fatigue damage can develop within asphalt pavement due to the continuous impact of driving loads and natural elements. Understanding the process of asphalt mixtures’ fatigue damage is crucial for guiding the design, maintenance, and repair of asphalt pavement. This research aims to establish a model that characterizes the mixtures’ modulus decay under a three-dimensional (3-D) stress state. Firstly, asphalt mixes were subjected to direct tensile (DT), indirect tensile (IDT), unconfined compressive (UC) strength and fatigue tests, and the resulting data were analyzed. Then, modulus decay models under DT, IDT, and UC conditions were established, and the modulus decay patterns under the three loading modes were compared and analyzed. Finally, using the fatigue stress strength ratio Δ (a fatigue resistance index for asphalt mixtures that takes into account the impacts of stress state and loading rate), a unified characterization model for asphalt mixes’ modulus decay under a 3-D stress state was created. According to the study’s findings, asphalt mixes’ modulus decay during fatigue damage exhibits obvious nonlinear characteristics. While the asphalt mixes’ modulus decay law with various loading modalities is similar under the same conditions, the decay rate may differ. Essentially, the speed of the modulus decay of a certain asphalt mixture primarily depends on the value of Δ during service. A larger Δ indicates a faster modulus decay. This study offers a theoretical foundation for the conversion from material fatigue damage to structural fatigue damage, which is vital for enhancing the asphalt pavements’ construction quality and longevity.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Science and Technology Project of Hebei Provincial Department of Transportation

Postgraduate Scientific Research Innovation Project of Changsha University of Science and Technology

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3