A Simplified Analytical Model for FRP-Strengthened Curved Brittle Substrates Using the Multi-Linear Bond-Slip Law

Author:

Yuan Yu1,Milani Gabriele1ORCID

Affiliation:

1. Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Abstract

The utilization of fiber-reinforced polymer (FRP) composites for building reinforcement has gained widespread acceptance. However, the bond behavior between externally applied composites and strengthened substrates, which are crucial for system efficacy, has primarily focused on flat surfaces. Yet, the challenge of curved substrates, common in masonry arches and vaults, remains less explored. This study introduces a classical analytical model addressing the bond behavior between FRP plates and curved substrates. This classical approach is structured upon a simplified model that concentrates all the non-linearities of the FRP–substrate interface. The interface is described through a universal multi-linear stress–slip relationship, with the influence of the curved substrate being considered by the normal stress that impacts the interface law. Closed-form solutions for distinct bond-slip law stages are derived and verified against the previous study. Through comparisons with existing experimental data and simulations, this approach is able to predict the maximum load, the trends of the global load-slip curves, and give insights into detailed local behavior. Additionally, the exploration of employing neural networks for determining the interface law exhibits promising outcomes.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3