ViT-Based Image Regression Model for Shear-Strength Prediction of Transparent Soil

Author:

Wang Ziyi1,Jia Jinqing1ORCID,Zhang Lihua1,Li Ziqi2

Affiliation:

1. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China

2. School of Civil Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

The direct-shear test is the primary method used to test the shear strength of transparent soil, but this experiment is complex and easily influenced by experimental conditions. In order to simplify the process of obtaining the shear strength of transparent soil, an image regression model based on a vision transformer (ViT) is proposed in this paper; this is used to recognize the shear strength of the soil based on images of transparent-soil patches. This model uses a convolutional neural network (CNN) to decompose the transparent-soil images into multiple image patches containing high-order features, utilizes a ViT for feature extraction, and designs a regression network to facilitate the transfer of information between the abstract image features and shear strength. This model solves the problem of boundary blurring and difficult-to-identify features in speckle images. To demonstrate the effectiveness of the proposed model, different parameters related to transparent soil were obtained by controlling the particle size of fused quartz sand and the content of aerosol; in addition, the friction angle and cohesive force of the transparent soil under different proportions were measured using direct-shear tests, serving as two datasets. The results show that the proposed method achieves correlations of 0.93 and 0.94 in the two prediction tasks, thus outperforming existing deep learning models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3