A Real-Time Inverted Velocity Model for Fault Detection in Deep-Buried Hard Rock Tunnels Based on a Microseismic Monitoring System

Author:

Xie Houlin12,Chen Bingrui13,Liu Qian12,Xiao Yaxun12ORCID,Liu Liu12,Zhu Xinhao12,Li Pengxiang4

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China

4. Institute of Underground Space for Stability and Support of Surrounding Rock, Heze University, Heze 274015, China

Abstract

Microseismic monitoring is an effective and widely used technology for dynamic fault disaster early warning and prevention in deep-buried hard rock tunnels. However, the insufficient understanding of the distribution of native faults poses a major challenge to yielding precise early warnings of disasters using an MS (Microseismic Monitoring System). Velocity field inversion is a reliable means to reflect fault information, and there is an urgent need to establish a real-time velocity field inversion method during tunnel excavation. In this paper, a method based on an MS is proposed to achieve the inversion of the velocity field in the monitoring area using microseismic event and excavation blasting data. The velocity field inversion method integrates the reflected wave ray-tracing method based on PSO (Particle Swarm Optimization) theory and FWI (Full-Waveform Inversion) theory. The accuracy of the proposed velocity inversion method was verified by various classic numerical simulation cases. In numerical simulations, the robustness of our method is evident in its ability to identify anomalous structural surfaces and velocity discontinuities ahead of the tunnel face.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3