Solutions to Achieve High-Efficient and Clean Building HVAC Systems

Author:

Ebrahimi Pejman1,Ridwana Iffat1ORCID,Nassif Nabil1

Affiliation:

1. Department of Civil and Architectural Engineering and Construction Management, University of Cincinnati, Cincinnati, OH 45220, USA

Abstract

The building sector accounts for a substantial amount of energy consumption, resulting in higher carbon emissions and environmental impact worldwide. Electrification and energy efficiency in building systems can be the key to decarbonization in buildings. This research proposes new heating and cooling loops consisting of heat pumps to lower natural gas usage in building systems. Typical chillers and boilers in the cooling and heating loops are replaced with heat pumps to serve the loads and maintain thermal comfort in the building. In addition, a new optimal supply air temperature (SAT) reset strategy is also implemented with the proposed configuration for better system performance. A large multi-zone office building is simulated as a case study to measure the conventional system’s electricity and natural gas consumption and the proposed design. Even with heat pumps that use electricity as the energy source, electricity consumption is reduced by 3.3% to 11.8% in different climate zones for the proposed system. On the other hand, 10.2% to 67% lower natural gas is consumed when the proposed system and the optimal SAT reset are utilized. The carbon emission is also reduced by 10.8% to 38% compared to the conventional system. The results show that the proposed design and optimization strategy can lead to significant energy and cost savings in conjunction with lower carbon emissions.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3