Research on Multiple Energy-Saving Strategies for Existing Coach Stations: A Case of the Xi’an Area, China

Author:

Li Xueping1,Qin Luo1,Li Jingjing1

Affiliation:

1. School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

In the context of China’s dual-carbon goals, energy efficiency in public buildings has become a focal point of public concern. As large-scale public transportation buildings, the indoor thermal comfort and the current state of energy consumption of coach stations are increasingly being emphasized. This research used existing coach stations in the Xi’an region as the object; through on-site investigations and field tests of indoor thermal environments in winter and summer seasons, it was found that the coach stations had energy waste and high energy consumption; the enclosure structures had poor thermal performance; and the stations lacked effective energy-saving measures. Energy-saving transformation strategies were proposed from two aspects: enclosure structures and renewable energy utilization. Using DeST-C for energy consumption, the external walls, roofs, insulation materials, and glass materials were simulated, and nine different combinations of energy-saving schemes were simulated using orthogonal experiments. The optimal scheme was selected based on the comprehensive energy-saving rate and economic analysis results, which included using 80 mm XPS external insulation for the external walls, low-e hollow glass for the windows (low transmittance type), and an 80 mm PUR board for the roof insulation. The energy-saving rate of this scheme was 26.84%. The use of rooftop solar photovoltaic power generation and fresh air heat recovery devices can effectively reduce building energy consumption, and the investment payback period is less than 5 years. The research applications have practical significance for improving the indoor environment of existing coach stations and saving energy consumption.

Funder

Shaanxi Provincial Social Science Fund Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference46 articles.

1. Sustainable Development Goals and climate change adaptation in cities;Barau;Nat. Clim. Chang.,2018

2. The Sustainable Development Goals: A plan for building a better world?;Pogge;J. Glob. Ethics,2015

3. Energy efficiency measures in buildings for achieving sustainable development goals;Heliyon,2018

4. Integrating the sustainable development goals in building projects;Goubran;J. Sustain. Res.,2019

5. China’s building stock estimation and energy intensity analysis;Huo;J. Clean. Prod.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3