Safety Assessment of the Main Beams of Historical Buildings Based on Multisource Data Fusion

Author:

Chen Ying1,Zhang Ran1,Li Yanfeng2ORCID,Xie Jiyuan2,Guo Dong3,Song Laiqiang3

Affiliation:

1. College of JangHo Architecture, Northeastern University, Shenyang 110169, China

2. School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China

3. Dalian Branch of China Railway Ninth Bureau Group Co., Ltd., Dalian 116019, China

Abstract

Taking the main beams of historical buildings as the engineering background, existing theoretical research results related to influencing structural factors were used along with numerical simulation and data fusion methods to examine their integrity. Thus, the application of multifactor data fusion in the safety assessment of the main beams of historical buildings was performed. On the basis of existing structural safety assessment methods, neural networks and rough set theory were combined and applied to the safety assessment of the main beams of historical buildings. The bearing capacity of the main beams was divided into five levels according to the degree to which they met current requirements. The safety assessment database established by a Kohonen neural network was clustered. Thus, the specific evaluation indices corresponding to the five types of safety levels were presented. The rough neural network algorithm, integrating the rough set and neural network, was applied for data fusion with this database. The attribute reduction function of the rough set was used to reduce the input dimension of the neural network, which was trained, underwent a learning process, and then used for predictions. The trained neural network was applied for the safety assessment of the main beams of historical buildings, and six specific attribute index values corresponding to the main beams were directly input to obtain the current safety statuses of the buildings. Corresponding management suggestions were also provided.

Funder

Natural Science Foundation of Liaoning Province

Project of Science and Technology Research, Education Department of Liaoning Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3