Mechanical and Microstructural Properties of Rubberized Geopolymer Concrete: Modeling and Optimization

Author:

Giri Yajish Giri A/L Parama1,Mohammed Bashar S.1ORCID,Liew M. S.1,Zawawi Noor Amila Wan Abdullah1ORCID,Abdulkadir Isyaka2,Singh Priyanka3,Ravindran Gobinath4

Affiliation:

1. Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia

2. Institute of Energy Infrastructure, Universiti Tenaga Nasional, Putrajaya Campus, Jalan Kajang-Puchong, Kajang 43000, Malaysia

3. Department of Civil Engineering, Amity School of Engineering & Technology, Amity University Uttar Pradesh, Noida 201303, India

4. Civil Department, SR University, Warangal 506371, India

Abstract

The construction industry is increasingly focused on sustainability, with a particular emphasis on reducing the environmental impact of cement production. One approach to this problem is to use recycled materials and explore eco-friendly raw materials, such as alumino-silicate by-products like fly ash, which can be used as raw materials for geopolymer concrete. To enhance the ductility, failure mode, and toughness of the geopolymer, researchers have added crumb rubber processed from scrap tires as partial replacement to fine aggregate of the geopolymer. Therefore, this study aims to develop rubberized geopolymer concrete (RGC) by partially replacing the fine aggregate with crumb rubber (CR). To optimize the mechanical properties of RGC, response surface methodology (RSM) has been used to develop 13 mixes with different levels and proportions of CR (10–30% partial replacement of fine aggregate by volume) and sodium hydroxide molarity (10–14 M) as input variables. The results showed that the strength properties increased as the molarity of NaOH increased, while the opposite trend was observed with CR. The maximum values for compressive strength, flexural strength, and uniaxial tensile strength were found to be 25 MPa, 3.1 MPa, and 0.41 MPa, respectively. Response surface models of the mechanical strengths, which were validated using ANOVA with high R2 values of 72–99%, have been developed. It has been found that using 10% CR with 14 M sodium hydroxide resulting in the best mechanical properties for RGC, which was validated with experimental tests. The result of the multi-objective optimization indicated that the optimum addition level for NaOH is 14 M, and the fine aggregate replacement level with CR is 10% in order to achieve a rubberized geopolymer suitable for structural applications.

Funder

Universiti Teknologi PETRONAS (UTP) Malaysia

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ANOVA Method Reveals Key Factors Influencing Geopolymer Strength: A Comprehensive Evaluation of Input Variables;2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3