Applications of Smart and Self-Sensing Materials for Structural Health Monitoring in Civil Engineering: A Systematic Review

Author:

Vasconcelos Ana Raina Carneiro1ORCID,de Matos Ryan Araújo2,Silveira Mariana Vella1ORCID,Mesquita Esequiel3ORCID

Affiliation:

1. Department of Hydraulic and Environmental Engineering, Campus Pici, Federal University of Ceara, Fortaleza 60020-181, Brazil

2. Construction Rehabilitation and Durability Laboratory, Campus Russas, Federal University of Ceara, Russas 62900-000, Brazil

3. Department of Architecture, Urbanism and Design, Campus Benfica, Federal University of Ceara, Fortaleza 60020-181, Brazil

Abstract

Civil infrastructures are constantly exposed to environmental effects that can contribute to deterioration. Early detection of damage is crucial to prevent catastrophic failures. Structural Health Monitoring (SHM) systems are essential for ensuring the safety and reliability of structures by continuously monitoring and recording data to identify damage-induced changes. In this context, self-sensing composites, formed by incorporating conductive nanomaterials into a matrix, offer intrinsic sensing capabilities through piezoresistivity and various conduction mechanisms. The paper reviews how SHM with self-sensing materials can be applied to civil infrastructure while also highlighting important research articles in this field. The result demonstrates increased dissemination of self-sensing materials for civil engineering worldwide. Their use in core infrastructure components enhances functionality, safety, and transportation efficiency. Among nanomaterials used as additions to produce self-sensing materials in small portions, carbon nanotubes have the most citations and, consequently, the most studies, followed by carbon fiber and steel fiber. This highlight identifies knowledge gaps, benchmark technologies, and outlines self-sensing materials for future research.

Funder

Coordination for the Improvement of Higher Education Personnel–Brazil (CAPES)–

INSA Rouen–FUNCAP

CNPQ

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3