Dynamic Mechanical Strength Prediction of BFRC Based on Stacking Ensemble Learning and Genetic Algorithm Optimization

Author:

Zheng Jiayan1,Wang Minghui1ORCID,Yao Tianchen1,Tang Yichen1,Liu Haijing2

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. China Merchants Chongqing Communications Technology Research & Design Institute Co., Ltd., Chongqing 400074, China

Abstract

Split Hopkinson pressure bar (SHPB) tests are usually used to determine the dynamic mechanical strength of basalt-fiber-reinforced concrete (BFRC), but this test method is time-consuming and expensive. This paper makes predictions about the dynamic mechanical strength of BFRC by employing machine learning (ML) algorithms and feature sets drawn from experimental data from prior works. However, there is still the problem of improving the accuracy of the dynamic mechanical strength prediction by the BFRC, which remains a challenge. Using stacking ensemble learning and genetic algorithms (GA) to optimize parameters, this study proposes a prediction method that combines these two techniques for obtaining accurate predictions. This method is composed of three parts: (1) the training uses multiple base learners, and the algorithms employed by the learners include extreme gradient boosting (XGBoost), gradient boosting (GB), random forest (RF), and support vector regression (SVR); (2) multi-base learners are combined using a stacking strategy to obtain the final prediction; and (3) using GA, the parameters are optimized in the prediction model. An experiment was conducted to compare the proposed approach with popular techniques for machine learning. In the study, the stacking ensemble algorithm integrated the base learner prediction results to improve the model’s performance and the GA further improved prediction accuracy. As a result of the application of the method, the dynamic mechanical strength of BFRC can be predicted with high accuracy. A SHAP analysis was also conducted using the stacking model to determine how important the contributing properties are and the sensitivity of the stacking model. Based on the results of this study, it was found that in the SHPB test, the strain rate had the most significant influence on the DIF, followed by the specimen diameter and the compressive strength.

Funder

National Natural Science Foundation of China

Education Commission Project of Chongqing

State Key Laboratory of Mountain Bridge and Tunnel Engineering

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3