Tensile Mechanical and Stress-Strain Behavior of Recycling Polypropylene Fiber Recycled Coarse Aggregate Concrete

Author:

Wang Jianchao1,Liang Jiahe2,Li Yucheng2,Hou Wei3

Affiliation:

1. School of Science, Shenyang Jianzhu University, Shenyang 110168, China

2. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China

3. School of Marxism, Shenyang Jianzhu University, Shenyang 110168, China

Abstract

To effectively recycle waste petroleum products and construction waste, recycling polypropylene fiber (RPF) and recycled aggregate can be mixed into concrete to make RPF recycled coarse aggregate (RCA) concrete. In this study, the RPF recycled from a polypropylene (PP) packaging belt was used as the test material and manually cut into the shape required for the experiment. The effects of RCA and RPF on the tensile mechanical behavior of concrete are researched. The failure modes and constitutive relationship of the specimens under axial tension and splitting tension are further investigated. The results show that the axial tensile strength of RPF RCA concrete first increased and then decreased with the increase in fiber volume content, and was the largest when the fiber volume content was 1.5%, and its strength increased by 21.14% compared with that of recycled concrete. Its lifting rate relative to recycled concrete is between 13.14–21.41%. The change trend of axial tensile strength with the substitution rate of RCA is that it decreases with the increase in substitution rate, and the substitution rate decreases by 9.64% when the substitution rate is 100% compared with 0%.The peak strain first increased and then decreased with the increase in fiber volume content, and the maximum fiber volume content was 1.5%, which increased by 28.19% compared with that of recycled concrete. The peak strain first increased and then decreased with the increase in fiber length-diameter ratio, and the maximum length-diameter ratio was 47.85, which increased by 18.22% compared with that of recycled concrete. The peak strain increased with the increase in the replacement rate of RCA, and the peak strain at 30%, 60% and 100% was 96.22%, 102.45% and 118.09% when the replacement rate was 0%, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3