Advancing Efficiency in Mineral Construction Materials Recycling: A Comprehensive Approach Integrating Machine Learning and X-ray Diffraction Analysis

Author:

Wilhelm Markus1ORCID,Lotter Frank2ORCID,Scherdel Christian2,Schmitt Jan1ORCID

Affiliation:

1. Institute of Digital Engineering, Technical University of Applied Sciences Würzburg-Schweinfurt, Ignaz-Schön-Straße 11, 97421 Schweinfurt, Germany

2. Center for Applied Energy Research, Magdalene-Schoch-Straße 3, 97074 Würzburg, Germany

Abstract

In the context of environmental protection, the construction industry plays a key role with significant CO2 emissions from mineral-based construction materials. Recycling these materials is crucial, but the presence of hazardous substances, i.e., in older building materials, complicates this effort. To be able to legally introduce substances into a circular economy, reliable predictions within minimal possible time are necessary. This work introduces a machine learning approach for detecting trace quantities (≥0.06 wt%) of minerals, exemplified by siderite in calcium carbonate mixtures. The model, trained on 1680 X-ray powder diffraction datasets, provides dependable and fast predictions, eliminating the need for specialized expertise. While limitations exist in transferability to other mineral traces, the approach offers automation without expertise and a potential for real-world applications with minimal prediction time.

Funder

Bavarian State Ministry of Environment and Consumer Protection

Center for Basic Materials Efficiency (REZ) at the Bavarian Environment Agency

publication fund of the Technical University of Applied Sciences Wuerzburg-Schweinfurt

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3