Observation and Interpretation of Closely Spaced Fundamental Modes of a High-Rise Building

Author:

Sanchez Gómez Sergio,Metrikine Andrei V.

Abstract

In this paper the dynamic behaviour of a high-rise building with complex structural system is studied. In some cases, to optimize the building design, the horizontal stability of the building is accomplished by the contribution of several structural components. This is the case of the JuBi tower, the building studied in this paper. The horizontal stability of the building is accomplished by three cores and outer walls. The cores and the walls are connected through the floors and the foundation. The data recorded during the experimental campaign carried out in this building show a double-peak behaviour corresponding to two closely spaced modes in the translational directions. This is caused by the weak coupling between the structural components. To study this phenomena, in this paper, a yet unique double-beam model is used. The parameters of the model are tuned so as to resemble the experimental response of the building. Results of the model evidence that the weak coupling is caused by the beams and the foundation. Also, it is shown that the two closely spaced modes correspond both to bending shape modes.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference14 articles.

1. Vibration-Based Assessment of the Tensile Force in the Tie-Rods of the Milan Cathedral

2. Impact On An Elastically Connected Double-beam System;Seelig;J. Appl. Mech.,1963

3. Normal mode vibrations of systems of elastically connected parallel bars;Seelig;J. Acoust. Soc. Am.,1963

4. Forced Responses of Two Elastic Beams Interconnected by Spring-Damper Systems

5. Natural vibrations of systems of elastically connected Timoshenko beams

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3