Numerical Analysis of Shallow Foundations with Varying Loading and Soil Conditions

Author:

Hakro Muhammad RehanORCID,Kumar AneelORCID,Ali MujahidORCID,Habib Agha Faisal,de Azevedo Afonso R. G.ORCID,Fediuk RomanORCID,Sabri Mohanad Muayad SabriORCID,Salmi Abdelatif,Awad Youssef Ahmed

Abstract

The load–deformation relationship under the footing is essential for foundation design. Shallow foundations are subjected to changes in hydrological conditions such as rainfall and drought, affecting their saturation level and conditions. The actual load–settlement response for design and reconstructions is determined experimentally, numerically, or utilizing both approaches. Ssettlement computation is performed through large-scale physical modeling or extensive laboratory testing. It is expensive, labor intensive, and time consuming. This study is carried out to determine the effect of different saturation degrees and loading conditions on settlement shallow foundations using numerical modeling in Plaxis 2D, Bentley Systems, Exton, Pennsylvania, US. Plastic was used for dry soil calculation, while fully coupled flow deformation was used for partially saturated soil. Pore pressure and deformation changes were computed in fully coupled deformation. The Mohr–Columb model was used in the simulation, and model parameters were calculated from experimental results. The study results show that the degree of saturation is more critical to soil settlement than loading conditions. When a 200 KPa load was applied at the center of the footing, settlement was recored as 28.81 mm, which was less than 42.96 mm in the case of the full-depth shale layer; therefore, settlement was reduced by 30% in the underlying limestone rock layer. Regarding settlement under various degrees of saturation (DOS), settlment is increased by an increased degree of saturation, which increases pore pressure and decreases the shear strength of the soil. Settlement was observed as 0.69 mm at 0% saturation, 1.93 mm at 40% saturation, 2.21 mm at 50% saturation, 2.77 mm at 70% saturation, and 2.84 mm at 90% saturation of soil.

Funder

Ministry of Science and Higher Education of the Russian Federation under the strategic academic leadership program 'Priority 2030'

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference88 articles.

1. Bearing capacity of shallow foundations;Chen,1991

2. Settlement behavior of shallow foundations in unsaturated soils under rainfall;Kim;Sustainability,2017

3. Simulating the Response of Shallow Foundations Using Finite Element Modelling https://www.mssanz.org.au/MODSIM03/Volume_04/C15/03_Johnson_Simulating.pdf.

4. Numerical Estimation of Settlement under a Shallow Foundation by the Pressuremeter Method

5. Theoretical Soil Mechanics;Terzaghi,1943

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3