Abstract
This paper proposes the use of enhanced comprehensive learning particle swarm optimization (ECLPSO), combined with a Gaussian local search (GLS) technique, for the simultaneous optimal size and shape design of truss structures under applied forces and design constraints. The ECLPSO approach presents two novel enhancing techniques, namely perturbation-based exploitation and adaptive learning probability, in addition to its distinctive diversity of particles. This prevents the premature convergence of local optimal solutions. In essence, the perturbation enables the robust exploitation in the updating velocity of particles, whilst the learning probabilities are dynamically adjusted by ranking information on the personal best particles. Based on the results given by ECLPSO, the GLS technique takes data from the global best particle and personal best particles in the last iteration to generate samples from a Gaussian distribution to improve convergence precision. A combination of these techniques results in the fast convergence and likelihood to obtain the optimal solution. Applications of the combined GLS-ECLPSO method are illustrated through several successfully solved truss examples in two- and three-dimensional spaces. The robustness and accuracy of the proposed scheme are illustrated through comparisons with available benchmarks processed by other meta-heuristic algorithms. All examples show simultaneous optimal size and shape distributions of truss structures complying with limit state design specifications.
Funder
Thailand Science Research and Innovation Fund, Chulalongkorn University
Ratchadaphiseksomphot Endowment Fund
Second Century Fund
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献