Combined Gaussian Local Search and Enhanced Comprehensive Learning PSO Algorithm for Size and Shape Optimization of Truss Structures

Author:

Van Thu HuynhORCID,Tangaramvong SawekchaiORCID,Muong Soviphou,Van Phuc TranORCID

Abstract

This paper proposes the use of enhanced comprehensive learning particle swarm optimization (ECLPSO), combined with a Gaussian local search (GLS) technique, for the simultaneous optimal size and shape design of truss structures under applied forces and design constraints. The ECLPSO approach presents two novel enhancing techniques, namely perturbation-based exploitation and adaptive learning probability, in addition to its distinctive diversity of particles. This prevents the premature convergence of local optimal solutions. In essence, the perturbation enables the robust exploitation in the updating velocity of particles, whilst the learning probabilities are dynamically adjusted by ranking information on the personal best particles. Based on the results given by ECLPSO, the GLS technique takes data from the global best particle and personal best particles in the last iteration to generate samples from a Gaussian distribution to improve convergence precision. A combination of these techniques results in the fast convergence and likelihood to obtain the optimal solution. Applications of the combined GLS-ECLPSO method are illustrated through several successfully solved truss examples in two- and three-dimensional spaces. The robustness and accuracy of the proposed scheme are illustrated through comparisons with available benchmarks processed by other meta-heuristic algorithms. All examples show simultaneous optimal size and shape distributions of truss structures complying with limit state design specifications.

Funder

Thailand Science Research and Innovation Fund, Chulalongkorn University

Ratchadaphiseksomphot Endowment Fund

Second Century Fund

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3