Research on Safety Risk Management of a Steel Bracing System Based on Catastrophe Theory

Author:

Chen HuanORCID,Zhang Ke,Zhou Kun,Feng Tugen,Sun Xiaotong,Kuang Xingchen,Li Yang,Wang Zuocai

Abstract

The stability of a steel bracing system is one of the most important indicators by which to measure the stability of the foundation pit. Although a steel bracing system can be monitored using the axial force data, it is subject to the risk of sudden changes due to certain factors and has the characteristics of dynamic discontinuity. Therefore, safety risk management should be applied to the mutability of steel bracing systems to ensure stability. We used the steel bracing system of a foundation pit in Ningbo City, China, as the research object. First, through fault tree analysis (FTA) of the characteristics of the steel bracing system, a safety risk identification of the catastrophe risk was carried out. Second, the safety risk was standardized, and a safety risk evaluation index system was established; the validity and stability of the index system were then verified. Next, a catastrophe theory-based evaluation model was established to determine the safety risk level of the steel bracing system. Finally, a steel bracing risk management process was designed, and a safety risk response was proposed based on the results of the evaluation model. The result was that the membership function value belongs to the general risk area, which accords with the actual state of steel bracing in engineering, and subsequent safety risk response measures can be applied. The proposed method performs well in identifying the risk of sudden changes in steel bracing systems; it also rates the risk and offers response measures to ensure the stability of the steel bracing system. Additionally, this method is of significance due to its applicability in various projects.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference29 articles.

1. Evaluation of collapse possibility of deep foundation pits in metro stations based on multi-state fuzzy Bayesian networks;Rock Soil Mech.,2020

2. A Coupling Method for Eco-Geological Environmental Safety Assessment in Mining Areas Using PCA and Catastrophe Theory;Nat. Resour. Res.,2020

3. Incremental dynamic analysis with consideration of modeling uncertainties;Earthq. Eng. Struct. Dyn.,2009

4. Probabilistic analysis of excavation-induced damages to existing structures;Comput. Geotech.,2013

5. Optimum earthquake design coefficients based on probabilistic seismic hazard analyses: Theory and applications;Earthq. Spectra,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3