The Secondary Development and Application of the Improved Nishihara Creep Model in Soft Rock Tunnels

Author:

Deng Xianghui12,Shi Junxin1,Li Xiaolin3,Wang Rui12,Zhang Jinzeng3,Yang Xin1

Affiliation:

1. School of Civil and Architecture Engineering, Xi’an Technological University, Xi’an 710021, China

2. Xi’an Key Laboratory of Civil Engineering Testing and Destruction Analysis on Military-Civil Dual Use Technology, Xi’an 710021, China

3. China Railway 18th Bureau Group Corporation Limited, Tianjin 300222, China

Abstract

Given the complexity and diversity of rock formations, existing constitutive models struggle to accurately portray their mechanical properties, leading to substantial discrepancies between numerical simulation outcomes and reality. This inadequacy fails to meet the demands of numerical analysis in practical engineering. This study first analyzes the physical and mechanical properties of thin-layered carbonaceous phyllite. Subsequently, an improved Nishihara rheological constitutive model is established based on these analyses. Utilizing the secondary development function offered by FLAC3D, the proposed model is further developed. The program’s correctness and reliability are confirmed through a numerical simulation using the triaxial creep test from existing research. Finally, the established constitutive model is applied in the numerical simulation of an actual soft rock tunnel engineering, obtaining results compared to real monitoring data. The results demonstrate that the improved Nishihara model is more effective at describing the creep deformation characteristics of soft rock. Moreover, the findings from this study can serve as a theoretical reference for predicting deformation in soft rock tunnel engineering.

Funder

Natural Science Foundation

Science and Technology Department of Shanxi Province, Shanxi Provincial Department of Education

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3