Multi-Objective Optimization Research on the Integration of Renewable Energy HVAC Systems Based on TRNSYS

Author:

Si Qiang12,Peng Yougang3,Jin Qiuli3,Li Yuan2,Cai Hao1

Affiliation:

1. School of Civil Engineering, Changzhou Vocational Institute of Engineering, Changzhou 213164, China

2. Zhifang Engineering Design Co., Ltd., Nanjing 210014, China

3. Jiangsu Keli Air Conditioning Co., Ltd., Changzhou 213163, China

Abstract

Well-designed passive buildings can drastically reduce building energy consumption, and optimal design of air conditioning systems is the key to achieving low operating energy consumption in near-zero energy buildings. TRNSYS was used to build the simulation model for a near-zero-energy building and its air conditioning system in Beijing. The Taguchi method was used to sort the design parameters that affect system performance according to the degree of influence and find the best combination of design parameters to optimize the system, which increased the solar fraction of the system by 4.6% and reduced the annual operating energy consumption by 7.32%. For the optimized system, a multi-objective optimization function of the life cycle costs and carbon emissions was established. By comparing the energy consumption, life cycle costs, and carbon emissions of the air conditioning system under different system configurations, optimal configuration solutions under different design target weights were obtained. It was found that using a ground source heat pump system + solar collector system had better energy-savings benefits, but the operating costs were slightly higher. The application of absorption refrigeration can reduce the system operating costs but will increase the initial investment. The best economic benefits were achieved using the ground source heat pump system + solar collector system for heating in winter and the ground source heat pump system for cooling in summer, and the best environmental benefits were obtaining using the ground source heat pump system + solar collector system for heating in winter and the ground source heat pump system + solar absorption refrigeration system in summer, which provides a reference for the optimization design and research of air conditioning systems in near-zero energy buildings.

Funder

Jiangsu Provincial Higher Education Natural Science Research General Project “Research on Mechanism and Prediction Model of All-air Radiant Air Conditioning and Radiation Temperature Control”

Changzhou Science and Technology Plan Project “Constant Radiation Temperature Prediction Model Control Mechanism and Application under Radiation Refrigeration Research”

Jiangsu Provincial Industry-University-Research Cooperation Project “Design and System Development of Air Conditioning Radiation Temperature Control Based on Prediction Model”

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3