Design Analysis of Mass Timber and Volumetric Modular Strategies as Counterproposals for an Existing Reinforced Concrete Hotel

Author:

Filion Marie-Laure1,Ménard Sylvain1,Carbone Carlo2ORCID,Bader Eddin Mohamad1ORCID

Affiliation:

1. Department of Applied Sciences, University of Quebec at Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada

2. School of Design, University of Quebec at Montreal (UQAM), Montreal, QC H2X 3X9, Canada

Abstract

Construction professionals work in silos and use traditional design and construction methods. The growing demand for rapidly built and high-quality construction is making off-site manufacturing mainstream. Studies have shown that collaboration among all stakeholders is a necessary component for success in the construction of such buildings. This multidisciplinary study of an existing concrete hotel aims to explore an alternative structural design in mass timber or volumetric modular construction. To this end, the reinforced concrete floor plan of Club Med de Charlevoix in Quebec, Canada, was used as a benchmark for two different structural systems. The first strategy investigated CLT (cross-laminated timber) and glulam columns to replicate the reinforced concrete system (column–slab), while the second involved maximum prefabrication (volumetric modular construction). Both mass timber and volumetric modular strategies can lead to a smaller carbon footprint. The main conclusion is that the plan should be designed from the outset to be either traditional or prefabricated since major changes are required if the choice is made to switch from one system to the other. Moreover, when structural systems maximize off-site construction, such as volumetric modular construction, the various professions need to be included during early planning. This is necessary to avoid task duplication and prevent the neglect of considerations such as manufacturable dimensions and partition organization.

Funder

Natural Sciences and Engineering Research Council of Canada

industrial partners of the NSERC industrial chair on eco-responsible wood construction

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3