Author:
Liu Jiatong,Liu Ruiyue,Li Wei,Wang Jiejun,Chen Ling
Abstract
To promote the development of timber–steel composite (TSC) structures, this paper proposes a TSC I-beam with an I-beam as the webs, covered with a timber board on its upper and lower surfaces and bolted together; the effect of varying the ratio of the timber board thickness to I-beam on the bending performance of the TSC I-beam was investigated. Considering the same total height of the beam cross-section and the variation of timber board thickness and I-beam height, three groups of six TSC beam specimens were designed and fabricated to carry out bending load failure tests, and the effects of the variation of timber board thickness with respect to I-beam height on the failure mode, flexural load capacity, ductility, and composite degree of TSC beams were analyzed. In addition, a model for predicting the elastic ultimate bending capacity and mid-span deflection of TSC I-beams was proposed on the basis of the composite coefficient method, which avoids the need to test the joints, and the theoretical calculation results were in good agreement with the test results, which can provide a reference for the design of TSC I-beams.
Funder
Central South University of Forestry and Technology
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献