The Influence of Wind Direction on the Inelastic Responses of a Base-Isolated Square Section High-Rise Building

Author:

Pang Huawei,Yang Qingshan,Liu Min,Hui Yi,Cheng Baolong

Abstract

Previous studies show that the largest wind-induced response of a square section fixed-base high-rise building occurs when the strong wind is blowing perpendicular onto a building face, and the greatest translational response is likely to occur in the crosswind direction. When it comes to a square section base-isolated high-rise building that allows the isolation system to yield under strong wind excitation, the inelastic response shows distinctive non-Gaussian characteristics under fluctuating wind excitation and mean drift phenomenon under non-zero mean wind load. These characteristics may lead to a quite different result when determining the most unfavorable wind direction. Thus, the influence of wind direction on the inelastic response of a square base-isolated high-rise building is discussed in this study based on synchronous pressure measurement. The multi-story superstructure is modeled as a linear elastic shear building, while the isolation system is represented in a bilinear hysteresis restoring force model. The peak value of the inelastic response is estimated through a moment-based Hermit model from an underlying standard Gaussian process. The results show that when the strong wind blows perpendicular onto a building face, the greatest inelastic displacement, both at the top and isolation level, occurs in the along-wind direction, which is different from the elastic response. With the change of wind direction, the largest combined inelastic displacement still occurs when the wind inclination angle is 0°, while the combined displacement in other directions is also very large, which is worthy of concern.

Funder

the 111 project of the Ministry of Education and the Bureau of Foreign Experts of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference52 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3