A Study of the Shear Behavior of Concrete Beams with Synthetic Fibers Reinforced with Glass and Basalt Fiber-Reinforced Polymer Bars

Author:

Duarte Isabela Oliveira1ORCID,Forti Nadia Cazarim da Silva1ORCID,Pimentel Lia Lorena1,Jacintho Ana Elisabete Paganelli Guimarães de Avila1ORCID

Affiliation:

1. Polytechnic School, Pontifical Catholic University of Campinas, Campinas 13086-099, Brazil

Abstract

The use of synthetic materials with high corrosion resistance in a concrete matrix yields structures that are more durable and suitable for use in aggressive environments, eliminating the need for frequent maintenance. Examples of such materials include glass (GFRP) and basalt (BFRP) fiber-reinforced polymer bars (FRP). Due to the low modulus of elasticity of these bars, concrete elements reinforced with FRP longitudinal rebars tend to exhibit cracks with wider openings and greater depths compared to those reinforced with steel rebars, which diminishes the element’s shear resistance. The addition of discontinuous fibers into the concrete aims to maintain stress transfer across the cracks, thereby enhancing the shear capacity and ductility of FRP-reinforced structures. This study evaluates the impact of fiber addition on the shear resistance of concrete beams reinforced with FRP rebars. An experimental investigation was conducted, focusing on the partial and complete substitution of stirrups with polypropylene macro fibers in concrete beams reinforced with FRP longitudinal rebars and stirrups. This research examined beams reinforced with glass (GFRP) and basalt (BFRP) fiber-reinforced polymer bars. For the initial set of beams, all stirrups were replaced with synthetic macro fibers. In the subsequent set, macro fibers were added to beams with insufficient stirrups. Although the complete replacement of GFRP and BFRP stirrups with polypropylene macro fibers did not alter the brittle shear failure mode, it did enhance the shear resistance capacity by 78.5% for GFRP-reinforced beams and 60.4% for BFRP-reinforced beams. Furthermore, the addition of macro fibers to beams with insufficient stirrups, characterized by excessive spacing, changed the failure mode from brittle shear to pseudo-ductile flexural failure due to concrete crushing. In such instances, the failure load increased by 18.8% for beams with GFRP bars and 22.8% for beams with BFRP bars.

Funder

Haizer Group

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3