A Cementless Binder Based on High-Calcium Fly Ash, Silica Fume, and the Complex Additive Ca(NO3)2 + MgCl2: Phase Composition, Hydration, and Strength

Author:

Barabanshchikov Yurii1,Usanova Kseniia12ORCID

Affiliation:

1. Institute of Civil Engineering, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia

2. Academy of Engineering, RUDN University, 117198 Moscow, Russia

Abstract

This study aimed to comprehensively investigate the properties of a binder based on high-calcium fly ash and silica fume with a complex additive consisting of calcium nitrate and magnesium chloride. The strength characteristics, the characteristics of the hydration process, and the phase composition of the hydration products of the binder were investigated. Silica fume was used to suppress the expansion of fly ash during hydration. A complex additive (CA) consisting of Ca(NO3)2 and MgCl2 provided a higher strength of binder than each of these salts separately. When testing a mortar with sand, the CA additive ensured that the strength of the specimens was 43.5% higher than the strength of the mortar with the addition of Ca(NO3)2 and 7.5% higher than the strength of the mortar with the MgCl2 additive. Calcium nitrate greatly accelerated the process of heat release in the first 60 min of binder hydration, and subsequently, conversely, slowed it down. The addition of MgCl2 gave a significantly greater thermal effect than Ca(NO3)2. When the two salts acted together, even a small fraction of magnesium chloride (0.2 of CA) compensated for the retarding effect of calcium nitrate and provided heat release for the binder that was almost as good as that of MgCl2.

Funder

Ministry of Science and Higher Education of the Russian Federation as part of the World-class Research Center program: Advanced Digital Technologies

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3