Train-Induced Vibration and Structure-Borne Noise Measurement and Prediction of Low-Rise Building

Author:

Chen Jialiang123,Hou Sen3,Zheng Bokai4,Li Xuming4,Peng Fangling1,Wang Yingying1,Chen Junjie3

Affiliation:

1. Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing 101111, China

2. School of Civil Engineering, Tsinghua University, Beijing 100084, China

3. Beiijao Zane Rail Technology (Beijing) Co., Ltd., Beijing 101111, China

4. School of Civil and Transportation, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The advancement of urban rail transit is increasingly confronted with environmental challenges related to vibration and noise. To investigate the critical issues surrounding vibration propagation and the generation of structure-borne noise, a two-story frame building was selected for on-site measurements of both vibration and its induced structure-borne noise. The collected data were analyzed in both the time and frequency domains to explore the correlation between these phenomena, leading to the proposal of a hybrid prediction method for structural noise that was subsequently compared with measured results. The findings indicate that the excitation of structure-borne noise produces significant waveforms within sound signals. The characteristic frequency of the structure-borne noise is 25–80 Hz, as well as that of the train-induced vibration. Furthermore, there exists a positive correlation between structural vibration and structure-borne noise, whereby increased levels of vibration correspond to more pronounced structure-borne noise; additionally, indoor distribution patterns of structure-borne noise are non-uniform, with corner wall areas exhibiting greater intensity than central room locations. Finally, a hybrid prediction methodology that is both semi-analytical and semi-empirical is introduced. The approach derives dynamic response predictions of the structure through analytical solutions, subsequently estimating the secondary noise within the building’s interior using a newly formulated empirical equation to facilitate rapid predictions regarding indoor building vibrations and structure-borne noises induced by subway train operations.

Funder

project of the Ministry of Housing and Urban-Rural Development of the People’s Republic of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3