Research on Dynamic Pile-Driving Formula Parameters and Driving Feasibility of Extra-Long PHC Pipe Piles

Author:

Liu Xiaomin1,Xiao Yonggang1ORCID,Zhou Junlong1,Ge Longbo1,Song Ziwen1

Affiliation:

1. Technical Center, China Construction Sixth Engineering Bureau Corp., Ltd., Tianjin 300012, China

Abstract

Prestressed high-strength concrete (PHC) pipe pile has the advantages of high single pile bearing capacity, a wide range of applications, good driving resistance, fast construction speed, etc. It has been widely used in high-rise buildings, bridges, ports, and other industries. The application of extra-long PHC pipe piles with a length of more than 50 m is increasing. However, there are few studies on the drivability and hammering criteria of extra-long PHC piles. To analyze the drivability of extra-long piles and predict their bearing capacity, in this paper, high-strain dynamic tests were carried out on 14 test sections with the pile foundation of Temburong Bridge in Brunei as the research background. The hammer stop control criteria calculated according to the Hiley formula would lead to excessive hammering. Three types of damage occurred during construction: pile shaft breakage, weld tearing, and pile head breakage. The weight and drop height of the piling hammer selected for this project were appropriate, and the extra-long test piles can be hammered to the design depth. The values of Cp (Compression of the pile) and n (the efficiency of the blow) were fitted based on the dynamic test data, which provided a more accurate reference for the selection of subsequent piling parameters of the project. It provides a more accurate calculation method for predicting the bearing capacity of extra-long PHC piles and provides control criteria for pile stopping and a scientific basis for their design and construction.

Funder

The Science and Technology Research and Development Project of China State Construction En-gineering Group Co., Ltd

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3