Sound-Based Construction Activity Monitoring with Deep Learning

Author:

Xiong Wuyue,Xu XuenanORCID,Chen LongORCID,Yang Jian

Abstract

Automated construction monitoring assists site managers in managing safety, schedule, and productivity effectively. Existing research focuses on identifying construction sounds to determine the type of construction activity. However, there are two major limitations: the inability to handle a mixed sound environment in which multiple construction activity sounds occur simultaneously, and the inability to precisely locate the start and end times of each individual construction activity. This research aims to fill this gap through developing an innovative deep learning-based method. The proposed model combines the benefits of Convolutional Neural Network (CNN) for extracting features and Recurrent Neural Network (RNN) for leveraging contextual information to handle construction environments with polyphony and noise. In addition, the dual threshold output permits exact identification of the start and finish timings of individual construction activities. Before training and testing with construction sounds collected from a modular construction factory, the model has been pre-trained with publicly available general sound event data. All of the innovative designs have been confirmed by an ablation study, and two extended experiments were also performed to verify the versatility of the present model in additional construction environments or activities. This model has great potential to be used for autonomous monitoring of construction activities.

Funder

Scientific Research Project of Shanghai Science and Technology Commission

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart audio signal classification for tracking of construction tasks;Automation in Construction;2024-09

2. AI integration in construction safety: Current state, challenges, and future opportunities in text, vision, and audio based applications;Automation in Construction;2024-08

3. Comparative Study on Various Sensors for Monitoring the Construction Sites;2024 International Conference on Science Technology Engineering and Management (ICSTEM);2024-04-26

4. CED: Consistent Ensemble Distillation for Audio Tagging;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. Automated noise source identification and respective level estimation on mixed-noise construction environments;Automation in Construction;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3