Experimental Investigation on Uniaxial Compressive Strength of Thin Building Sandstone

Author:

Huang BaofengORCID,Xu Yixian,Zhang Guojun

Abstract

Thin sandstone is a widely used building material; however, its compressive behavior is not well understood. Four groups of cylinders were manufactured in a factory to investigate the uniaxial compressive behavior of red sandstone. Uniaxial compression tests were performed to determine the compressive behavior and failure mode of the specimens. The geometry of the stress–strain diagram varied among the four groups. The critical strain generally increased with a decrease in the height of the cylinder, whereas the compressive strength exhibited an inverse trend. The experimental diagrams were normalized with the peak stress and corresponding critical strain to represent the stress–strain diagram of each group of cylinders. A formula consisting of two parabolas was employed for regression to obtain a representative mathematical expression of the diagram. The correlations between porosity, compressive strength, and elastic modulus were evaluated based on empirical expressions. Normalized strength was employed to evaluate the size effect on the diameter and length–diameter ratio (L/D) of the cylinder; the latter provided a better prediction of the experimental results than the former. A new expression in terms of L/D was proposed based on the regression analysis of the experimental results. This study is beneficial for the engineering application of sandstone as a construction material.

Funder

China National Science Foundation

China National Science and Technology Major Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference120 articles.

1. John, M. (1972). The Influence of Length to Diameter Ratio on Rock Properties in Uniaxial Compression: A Contribution to Standardization in Rock Mechanics Testing, Council for Scientific and Industrial Research.

2. Determining static elastic modulus of weak sandstone in Andalusian historical constructions from non-destructive tests: San Cristóbal’s stone;J. Build. Eng.,2022

3. Stone roofing in the Aosta Valley, Italy: Technical properties and durability of traditional Lithotypes;J. Build. Eng.,2021

4. Effect of super absorbent polymer on microstructural and mechanical properties of concrete blends using granite pulver;Struct. Concr.,2021

5. Intelligent detection of deterioration in cultural stone heritage;J. Build. Eng.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3