Functionalized Graphene Oxide with Chitosan for Dopamine Biosensing

Author:

Omar AminaORCID,Bayoumy Ahmed M.ORCID,Aly Ahmed A.ORCID

Abstract

Detecting biological structures via a rapid and facile method has become a pronounced point of research. Dopamine (DA) detection is critical for the early diagnosis of a variety of neurological diseases/disorders. A study on the real-time optical detection of DA is described here using graphene oxide (GO) functionalized with chitosan (Cs). Hence, a computational model dependent on a high theoretical level density functional theory (DFT) using the B3LYP/LANL2DZ model is carried out to study the physical as well as electronic properties of the proposed interaction between GO functionalized with Cs and its interaction with DA. GO functionalized with a Cs biopolymer was verified as having much higher stability and reactivity. Moreover, the addition of DA to functionalized GO yields structures with the same stability and reactivity. This ensures that GO-Cs is a stable structure with a strong interaction with DA, which is energetically preferred. Molecular electrostatic potential (MESP) calculation maps indicated that the impact of an interaction between GO and Cs increases the number of electron clouds at the terminals, ensuring the great ability of this composite when interacting with DA. Hence, these calculations and experimental results support the feasibility of using GO functionalized with Cs as a DA biosensor.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3