Single Position ECG Detection System Based on Charge Induction

Author:

Yang Yi1,Xu Kun1,Li Yu1,Zhang Yahui1,Zhang Limin1ORCID

Affiliation:

1. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China

Abstract

With the growing incidence of cardiovascular disease (CVD) in recent decades, the demand for out-of-hospital real-time ECG monitoring is increasing day by day, which promotes the research and development of portable ECG monitoring equipment. At present, two main categories of ECG monitoring devices are “limb lead ECG recording devices” and “chest lead ECG recording devices”, which both require at least two electrodes. The former needs to complete the detection by means of a two-hand lap joint. This will seriously affect the normal activities of users. The electrodes used by the latter also need to be kept at a certain distance, usually more than 10 cm, to ensure the accuracy of the detection results. Decreasing the electrode spacing of the existing ECG detection equipment or reducing the area required for detection will be more conducive to improving the integration of the out-of-hospital portable ECG technologies. Therefore, a single-position ECG system based on charge induction is proposed to realize ECG detection on the surface of the human body with only one electrode with a diameter of less than 2 cm. Firstly, the ECG waveform detected in a single location is simulated by analyzing the electrophysiological activities of the human heart on the human body surface with COMSOL Multiphysics 5.4 software. Then, the hardware circuit design of the system and the host computer are developed and the test is performed. Finally, experiments for static and dynamic ECG monitoring are carried out and the heart rate correlation coefficients are 0.9698 and 0.9802, respectively, which proves the reliability and data accuracy of the system.

Funder

National Nature Science Foundation Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3